1. A box contains 20 coins, of which 10 are fair and 10 are biased to land heads with probability 0.6 . A coin is drawn from the box and tossed once.
(a) (5 points) What is the chance that it will land a head?
(b) (15 points) Suppose that the coin drawn landed a head. Given this information, what is the conditional probability that if I draw another coin from the box(without replacing the first coin), then that coin will be a fair coin?
2. (20 points) In a test called Narco-Analysis, a "truth" serum is given to a suspect. It is known that it is 90% reliable when the person is guilty and 99% reliable when the person is innocent. In other words 10% of the guilty are judged innocent by the serum and 1% of the innocent are judged guilty. If the suspect was selected from a group of suspects of which only 5% have ever committed a crime and the serum indicates that she is guilty, what is the probability that she is innocent?
3. (20 points)Let $X \sim \operatorname{Uniform}(0,10)$. Let $Z=\frac{3}{X}$. Determine the probability density function of Z.
4. Let $X_{1}, \ldots X_{n}, \ldots$ be a sequence of independent and identically distributed random variables, with $E\left(X_{1}\right)=100$ and $\operatorname{Var}\left(X_{1}\right)=1$.
(a) (10 points) State the weak law of large numbers for the above mentioned sequence X_{n}.
(b) (10 points) Let $T_{n}=\frac{5}{n} \sum_{i=1}^{n}\left(3-X_{i}\right)$. Does the weak law of large numbers provide any information on T_{n} ?
5. (20 points) Let X be the minimum and Y be the maximum of three digits picked at random wthout replacement from $\{0,1, \ldots, 5\}$. Find the joint distribution of X and Y.
